

MCD-K

Monocrystalline Diamond - CVD and HPHT

In our synthetic diamond product range, the monocrystalline diamonds, also known as single crystal diamonds, are synthesized by Chemical Vapor Deposition (CVD) and High Pressure High Temperature (HPHT) technologies.

Name Product **Properties Applications** Colorless to light brown • For super-high surface finishing Ila type • Ultra precision cutting tools • Orientation (100) • Optical windows Synthesized by CVD technology • As diamond seeds for • Produced under ultra-high purity conditions in a vacuum growing lab diamonds CVD-M chamber Semiconductor devices Super-high hardness • Electronic component • Round, square, rectangle, triangle and any other • High-power lasers custom shapes • Thermal sink devices • Length available: from 2.0mm to 10.0mm Aerospace parts • Thickness available: from 0.3mm to 10.0mm Yellow color • For super-high surface finishing • Orientation (100) • Ultra precision cutting tools Synthesized by HPHT technology • For precious metals MCD-S • Close to the shapes of square, rectangle and triangle Wear parts • Length available: 2.0mm, 3.0mm, 3.5mm, 4.0mm, • As diamond seeds for growing 4.5mm, 5.0mm, 5.5mm, 6.0mm, 6.5mm lab diamonds Thickness available: from 1.0mm to 1.5mm Yellow color • For super-high surface finishing • Orientation (100) • Ultra precision cutting tools Synthesized by HPHT technology • For precious metals MCD-R • Close to the shapes of square and rectangle • Wear parts • Length available: 2.0mm, 3.0mm, 3.5mm, 4.0mm, • As diamond seeds for growing 4.5mm, 5.0mm, 5.5mm, 6.0mm, 6.5mm lab diamonds • Thickness available: from 1.0mm to 1.2mm • Yellow color • For super-high surface finishing • Orientation (100) • Ultra precision cutting tools • Synthesized by HPHT technology and further processed

• Thickness available: from 1.0mm to 1.5mm

• Complete square, rectangle and stick shapes

• Length available: 2.0mm, 3.0mm, 3.5mm, 4.0mm,

by laser cutting

4.5mm, 5.5mm, 6.0mm

• For precious metals

• As diamond seeds for growing

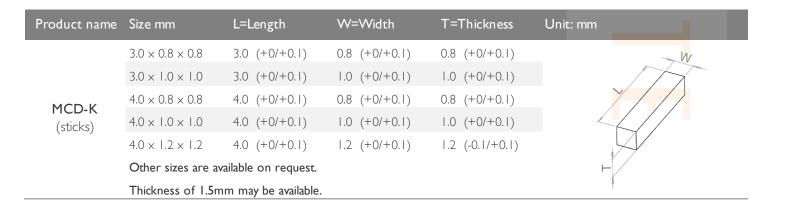
Dressing tools

lab diamonds

Wear parts

General dimensions and tolerances of monocrystalline diamonds

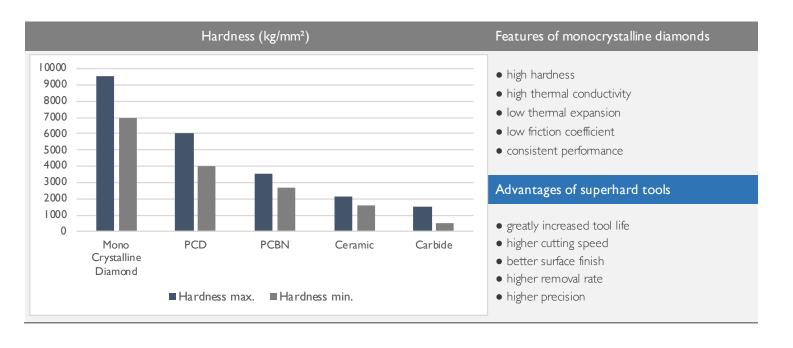
Product name	Size mm	L=Length	W=Width	T=Thickness	Unit: mm		
	3.0 × 1.0 × 1.2	3.0 (+0/+0.1)	1.0 (+0/+0.1)	1.2 (+0/+0.1)			
	$3.0 \times 2.5 \times 1.2$	3.0 (+0/+0.1)	2.5 (+0/+0.1)	1.2 (+0/+0.1)	W.		
	$3.0 \times 3.0 \times 1.2$	3.0 (+0/+0.1)	3.0 (+0/+0.1)	1.2 (+0/+0.1)			
CVD-M	$4.0 \times 3.0 \times 1.2$	4.0 (+0/+0.1)	3.0 (+0/+0.1)	1.2 (+0/+0.1)	1000		
	$5.0 \times 4.0 \times 1.2$	5.0 (+0/+0.1)	4.0 (+0/+0.1)	1.2 (+0/+0.1)	The state of the s		
	$6.0 \times 4.0 \times 1.2$	6.0 (+0/+0.1)	4.0 (+0/+0.1)	1.2 (+0/+0.1)			
	$7.0 \times 5.0 \times 1.5$	7.0 (+0/+0.1)	5.0 (+0/+0.1)	1.5 (+0/+0.1)			
	$8.0 \times 5.0 \times 1.5$	8.0 (+0/+0.1)	5.0 (+0/+0.1)	1.5 (+0/+0.1)			
	$9.0 \times 5.0 \times 1.5$	9.0 (+0/+0.1)	5.0 (+0/+0.1)	1.5 (+0/+0.1)			
	Sizes smaller than 10mm are available on request.						
	Shapes can be squares, rectangles, sticks, triangles, rounds, and custom ones.						


2.5	0.5				
	\times 2.5 \times 1.0	2.5 (+0/+0.5)	2.5 (+0/+0.5)	1.0 (+0/+0.1)	
3.0	× 3.0 × 1.0	3.0 (+0/+0.5)	3.0 (+0/+0.5)	1.0 (+0/+0.1)	
3.5	× 3.5 × 1.1	3.5 (+0/+0.5)	3.5 (+0/+0.5)	1.1 (-0.1/+0.1)	h h
4.0	× 2.0 × 1.1	4.0 (+0/+0.5)	2.0 (+0/+0.1)	1.1 (-0.1/+0.1)	100
4.0	× 4.0 × 1.2	4.0 (+0/+0.5)	4.0 (+0/+0.5)	1.2 (-0.1/+0.1)	
MCD-S 4.5	× 4.5 × 1.2	4.5 (+0/+0.5)	4.5 (+0/+0.5)	1.2 (-0.1/+0.1)	
	× 2.5 × 1.2	5.0 (+0/+0.5)	2.5 (+0/+0.1)	1.2 (-0.1/+0.1)	
5.0	× 5.0 × 1.2	5.0 (+0/+0.5)	5.0 (+0/+0.5)	1.2 (-0.1/+0.1)	
5.5	× 5.5 × 1.2	5.5 (+0/+0.5)	5.5 (+0/+0.5)	1.2 (-0.1/+0.1)	
6.0	× 6.0 × 1.2	6.0 (+0/+0.5)	6.0 (+0/+0.5)	1.2 (-0.1/+0.1)	
Oth	her sizes are avail	able on request.			
Thi	ickness of 1.5mm	may be available.			

Product name	Size mm	L=Length	T=Thickness	Unit: mm	
MCD-S (triangle)	3.0×0.8	3.0 (+0/+0.5)	0.8 (+0/+0.1)		
	3.0 × 1.0	3.0 (+0/+0.5)	1.0 (+0/+0.1)		
	3.5 × 1.1	3.5 (+0/+0.5)	1.1 (-0.1/+0.1)		
	4.0 × 1.2	4.0 (+0/+0.5)	1.2 (-0.1/+0.1)		
	4.5 × 1.2	4.5 (+0/+0.5)	1.2 (-0.1/+0.1)		F
	Other sizes are a	vailable on request.			
	Thickness of 1.5n	nm may be available.			

General dimensions and tolerances of monocrystalline diamonds

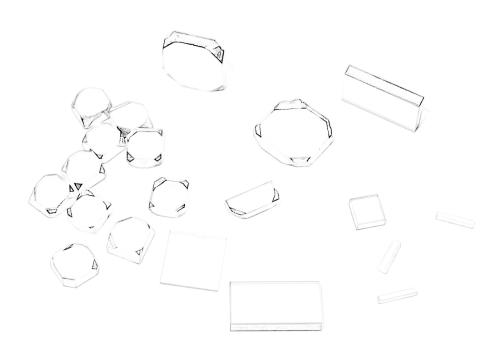
Product name	Size mm	L=Length	W=Width	T=Thickness	Unit: mm
	2.5 × 2.5 × 1.0	2.5 (+0/+0.5)	2.5 (+0/+0.5)	1.0 (+0/+0.1)	A A
	$3.0 \times 3.0 \times 1.0$	3.0 (+0/+0.5)	3.0 (+0/+0.5)	1.0 (+0/+0.1)	h
	$3.5 \times 3.5 \times 1.0$	3.5 (+0/+0.5)	3.5 (+0/+0.5)	1.0 (+0/+0.1)	
	$4.0 \times 4.0 \times 1.0$	4.0 (+0/+0.5)	4.0 (+0/+0.5)	1.0 (+0/+0.1)	
	$4.5 \times 4.5 \times 1.0$	4.5 (+0/+0.5)	4.5 (+0/+0.5)	1.0 (+0/+0.1)	
MCD-R	$5.0 \times 5.0 \times 1.0$	5.0 (+0/+0.5)	5.0 (+0/+0.5)	1.0 (+0/+0.1)	
	$5.5 \times 5.5 \times 1.0$	5.5 (+0/+0.5)	5.5 (+0/+0.5)	1.0 (+0/+0.1)	
	$6.0 \times 6.0 \times 1.0$	6.0 (+0/+0.5)	6.0 (+0/+0.5)	1.0 (+0/+0.1)	F
	Other sizes are a	vailable on request.			
	Thickness of 1.2r	nm may be available.			


Product name	Size mm	L=Length	W=Width	T=Thickness	Unit: mm
	$2.0 \times 2.0 \times 1.0$	2.0 (+0/+0.1)	2.0 (+0/+0.1)	1.0 (+0/+0.1)	
MCD-K	$2.5 \times 2.5 \times 1.0$	2.5 (+0/+0.1)	2.5 (+0/+0.1)	1.0 (+0/+0.1)	W
	$3.0 \times 3.0 \times 1.0$	3.0 (+0/+0.1)	3.0 (+0/+0.1)	1.0 (+0/+0.1)	Y
	$3.5 \times 3.5 \times 1.0$	3.5 (+0/+0.1)	3.5 (+0/+0.1)	1.0 (+0/+0.1)	(100)
	$4.0 \times 3.0 \times 1.0$	4.0 (+0/+0.1)	3.0 (+0/+0.1)	1.0 (+0/+0.1)	
	$4.0 \times 4.0 \times 1.0$	4.0 (+0/+0.1)	4.0 (+0/+0.1)	1.0 (+0/+0.1)	
			H		
	Other sizes are a	vailable on request.			
	Thickness of 1.5n	nm may be available.			

Comparison of superhard materials

Superhard Materials	Diamond	MCD	Monocrystalline MCD-S MCD-R MCD-K (HPHT - yellow)	MCD/CVD tools	Mirror finish precious metals, non-ferrous metals, PMMA, copper, aluminum,etc.	١,	
		CVD	Monocrystalline CVD-M (CVD - colorless)		Applications clock, jewelry, glasses, optics, camera, lens, mold, contact lenses, etc.		
			Polycrystalline CVD-P (CVD - opaque)	CVD/PCD tools	Fine finish, rough finish non-ferrous metals, CFRP, copper, copper alloy, aluminum, aluminum alloy, wood, stone, cemented carbide,etc.	Superhard Tools	
		PCD	Polycrystalline (carbide based)		Applications engine, bearing, camera, motor, mold, 3C, fiber board, chip board, hard board, fiberglass, graphite epoxy, etc.	d Tools	
	Cubic Boron Nitride	DCDN	Dalamara Ilia	PCBN tools	Fine finish, rough finish ferrous metals, hardened steel, tool steel, high-speed steel, cast iron, etc.		
	Cubic Boi off Nitride	PCBN	Polycrystalline	redin tools	Applications bearing, brake disc, cylinder liner, roller, ballscrew, transmission shaft, etc.		

Diamond tools have much higher wear resistance and longer tool life than convitional ceramic and carbide tools, the productivity and working efficiency are largely improved for difficult to machine materials.



About Us

With more than 20 years' experience in superhard material industry, we have been supplying the diamonds materials and the related products for years, we are using our knowhow to help customers to find accurate solutions, the word "ACCURATE" fits our culture very much, with that, we provide not only the product itself, but also our services.

Our Product Range

- Monocrystalline diamond (CVD and HPHT) for high surface finishing and precision machining
- CVD diamond polycrystalline (CVD-P) for dressing tools, heat spreading and optics
- Polycrystalline diamond (PCD) carbide based for woodworking and aluminum

LUOYANG ACCURATE TOOLING CO., LTD.

No.1 Chun Cheng Rd. Hi-Tech Development Zone 471003 Luoyang China
Tel +86 379 6327 3379 Cell +86 130 1555 5420

www.accuratedia.com info@accuratedia.com